
Approaching Mean-Variance Efficiency for Large
Portfolios

Yingying Li

Department of ISOM & Department of Finance
Hong Kong University of Science and Technology

Based on Joint Work with Mengmeng Ao and Xinghua Zheng

Yingying Li (HKUST) Approaching MV Efficiency



Outline

1 Introduction

2 Our Approach
An Unconstrained Regression Representation
High-dimensional Issues & Sparse Regression
Scenario I: When Asset Pool Includes Individual Assets Only
Scenario II: When Factor Investing Is Allowed

3 Simulation Studies

4 Empirical Studies

5 Summary

Yingying Li (HKUST) Approaching MV Efficiency



Introduction

Outline

1 Introduction

2 Our Approach
An Unconstrained Regression Representation
High-dimensional Issues & Sparse Regression
Scenario I: When Asset Pool Includes Individual Assets Only
Scenario II: When Factor Investing Is Allowed

3 Simulation Studies

4 Empirical Studies

5 Summary

Yingying Li (HKUST) Approaching MV Efficiency



Introduction

Markowitz Mean-Variance Optimization

• Markowitz (mean-variance) optimization:

maximize portfolio return given risk constraint

⇔ minimize portfolio risk given return constraint

• The solution to Markowitz optimization is mean-variance efficient
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Introduction

The “Plug-in” Portfolio

• If the mean and covariance matrix of returns were known
⇒ optimal portfolio

√

w∗ =
σ√

µ′Σ−1µ
Σ−1µ

• We know this is impossible
• Natural/Naive approach: plug in the sample mean and sample

covariance matrix
⇒ “plug-in” portfolio
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Introduction

How well does the plug-in portfolio perform?
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Introduction

Challenges for Large Portfolios

• Poor performance of the plug-in portfolio
• “Markowitz optimization enigma”: Michaud (1989)
• Best and Grauer (1991), Chopra and Ziemba (1993), Kan and

Zhou (2007) etc.

• The situation worsens as the number of assets increases

� Key reason: (High) Dimensionality

SR(plug-in)
SR∗

P→

√
1− ρ

1 + ρ/(SR∗)2 <
√

1− ρ < 1, as
N
T
→ ρ ∈ (0,1)
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Introduction

Alternative Methods

• Adjusting inputs

• Regularized covariance matrix or its inverse:
• shrinkage (Ledoit and Wolf (2004), Ledoit and Wolf (2017));
• thresholding (Bickel and Levina (2008), Cai and Liu (2011)); CLIME

(Cai, Liu and Luo (2011), Cai, Liu and Zhou (2016));
• POET (Fan, Fan and Lv (2008), Fan, Liao and Mincheva (2013));
• and many others...

• Mean estimation: Black and Litterman (1991)

• Imposing constraints:

• No-short-sale constraint (Jagannathan and Ma (2003));
• gross-exposure/`1 constraint (Brodie, Daubechies, De Mol, Giannone and

Loris (2009), Fan, Zhang and Yu (2012), Fan, Li and Yu (2012));
• 2-norm-constrained minimum variance portfolio (DeMiguel, Garlappi,

Nogales and Uppal (2009));
• other non-convex constraints (Fastrich, Paterlini and Winker (2012))
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Introduction

A Competitive Alternative: Nonlinear Shrinkage
(Ledoit and Wolf (2017), RFS)
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Introduction

Two Objectives

1 Meet risk constraint

2 Attain the maximum Sharpe ratio

Q: Is it possible to achieve both objectives simultaneously?

Answer: Yes ! → MAXSER !
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Introduction

Our Portfolio: MAXSER
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Introduction

Our Contributions

• MAXSER

• a bias-corrected unconstrained regression equivalent to
Markowitz

• consistent estimation of maximum Sharpe ratio

• consistency of return & risk

→ Approaches mean-variance efficiency for large portfolios!
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Our Approach An Unconstrained Regression Representation

Start From the Origin

• For a given level of risk constraint σ, the mean-variance
optimization problem is

maxE(w ′r) = w ′µ subject to Var(w ′r) = w ′Σw ≤ σ2. (1)

• Denote by θ = µ′Σ−1µ the squared maximum Sharpe ratio of the
tangency portfolio, the dual form with return constraint r∗ = σ

√
θ

is

minw ′Σw subject to w ′µ = r∗. (2)

• The optimal portfolio w∗ admits

w∗ =
σ√
θ
Σ−1µ. (3)
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Our Approach An Unconstrained Regression Representation

Existing Regression Formulations

• Constrained regression (e.g., Brodie, Daubechies, De Mol,
Giannone and Loris (2009)):

argmin
w

E(r∗ −w ′r)2 subject to E(w ′r) = r∗ or Var(w ′r) = σ2

→ constraints have to be replaced with sample version,
introducing errors/biases

• Britten-Jones (1999), arbitrary response (e.g. the number “1”):

argmin
w

E(1−w ′r)2

→ yields a multiple of the suboptimal plug-in portfolio & needs a
challenging scaling
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Our Approach An Unconstrained Regression Representation

Our Unconstrained Equivalent Regression
Representation

Proposition 1

The unconstrained regression

argmin
w

E(rc −w ′r)2, where rc :=
1 + θ

θ
r∗ ≡ σ1 + θ√

θ
, (4)

is equivalent to the mean-variance optimization.

• Unconstrained!
• Equivalent to the mean-variance optimization!
• Response rc is crucial!
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Our Approach High-dimensional Issues & Sparse Regression

High-dimensional Issues

• Proposition 1:
MV optimization⇒ equivalent unconstrained regression

• Sample version in practice:

argmin
w

1
T

T∑
t=1

(
rc −w ′Rt

)2
,

where Rt = (Rt1, . . . ,RtN)
′, t = 1, . . . ,T , are T i.i.d. copies of the

return vector r .
• In general it is impossible to consistently estimate the coefficients

in a high-dimensional regression where N/T = O(1)
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Our Approach High-dimensional Issues & Sparse Regression

Sparse Regression

• We adopt the sparse regression technique LASSO:

w(rc) := argmin
w

1
T

T∑
t=1

(
rc −w ′Rt

)2 subject to ||w ||1 ≤ λ
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Our Approach High-dimensional Issues & Sparse Regression

Importance of Using the Correct Response rc
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Our Approach Scenario I: When Asset Pool Includes Individual Assets Only

Estimator of the Maximum Sharpe Ratio and rc

Proposition 2

Define the following estimators of θ:

θ̂ :=
(T − N − 2)θ̂s − N

T
, (5)

where θ̂s := µ̂′Σ̂−1µ̂ is the sample estimate of θ. If N/T → ρ ∈ (0, 1), under
normality assumption we have

|θ̂ − θ| P→ 0.

Furthermore, our estimator of the response rc is

r̂c :=
1 + θ̂√

θ̂
, (6)

which satisfies
|r̂c − rc |

P→ 0.
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Our Approach Scenario I: When Asset Pool Includes Individual Assets Only

A LASSO-type Estimator

• Our estimator of w∗:

ŵ∗ = argmin
w

1
T

T∑
t=1

(
r̂c −w ′Rt

)2 subject to ||w ||1 ≤ λ. (7)

• ŵ∗ is our MAXimum - Sharpe ratio Estimated & sparse
Regression (MAXSER) portfolio.
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Our Approach Scenario I: When Asset Pool Includes Individual Assets Only

Main Result I: MAXSER Without Factor Structure

Theorem 1

Under normality and sparsity assumptions on the optimal portfolio, the
MAXSER portfolio ŵ∗ defined in (7) with r̂c given by (6) satisfies that,
as N →∞,

|µ′ŵ∗ − r∗| P→ 0, (8)

and ∣∣∣∣√ŵ∗′Σŵ∗ − σ
∣∣∣∣ P→ 0. (9)

N The MAXSER asymptotically achieves the maximum expected
return and meanwhile satisfies the risk constraint , therefore
approaches mean-variance efficiency!

� First method ever that achieves both objectives for large portfolios
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∣∣∣∣ P→ 0. (9)

N The MAXSER asymptotically achieves the maximum expected
return and meanwhile satisfies the risk constraint , therefore
approaches mean-variance efficiency!

� First method ever that achieves both objectives for large portfolios
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MAXSER portfolio ŵ∗ defined in (7) with r̂c given by (6) satisfies that,
as N →∞,
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Our Approach Scenario II: When Factor Investing Is Allowed

Outline

1 Introduction

2 Our Approach
An Unconstrained Regression Representation
High-dimensional Issues & Sparse Regression
Scenario I: When Asset Pool Includes Individual Assets Only
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Our Approach Scenario II: When Factor Investing Is Allowed

The Optimal Portfolio: A Factor-Idiosyncratic
Component Separation

• Consider the following model of returns:

ri = αi +
K∑

j=1

βij fj + ei :=
K∑

j=1

βij fj + ui , i = 1, · · · ,N,

• Special features of the model:
• The K included factors need NOT to be the full set of factors
• ui ’s, the “idiosyncratic returns”, are allowed to have factor structure

• Compact form:
r = βf + u
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Our Approach Scenario II: When Factor Investing Is Allowed

The Optimal Portfolio: A Factor-Idiosyncratic
Component Separation, ctd

• We will invest in the N assets and the K factors
• Question: How to estimate the optimal portfolio weight
(w f

1, . . . ,w
f
K ;w1, . . . ,wN) := (wf ,w)

Proposition 3

For any given risk constraint level σ, the optimal portfolio wall := (wf ,w) is given by(√
θf

θall
σw∗f −

√
θu

θall
σβ′w∗u ,

√
θu

θall
σw∗u

)
,

where θf = µ′fΣ
−1
f µf , θu = α′Σ−1

u α, and θall = µ′allΣ
−1
all µall . w∗f and w∗u are optimal

portfolio weights on factors and idiosyncratic components with one unit of risk:

w∗f =
1√
θf
Σ−1

f µf , w∗u =
1√
θu

Σ−1
u α.
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Our Approach Scenario II: When Factor Investing Is Allowed

Tasks & Challenges

• To estimate the optimal portfolio wall , we need to estimate

• θf & w∗
f

4 low-dimensional nature

⇒ the standard plug-in estimators work

• θu & w∗
u

4 high-dimensional nature !

⇒ main challenges
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Our Approach Scenario II: When Factor Investing Is Allowed

Estimator of Response rc

• Based on the factor model, we have

θall = θf + θu

• θu can be consistently estimated by θ̂u := θ̂all − θ̂f , where θ̂all
and θ̂f are computed by applying (5) to all assets and factors

• Estimator of the response rc : r̂c := (1 + θ̂u)/

√
θ̂u
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Our Approach Scenario II: When Factor Investing Is Allowed

The MAXSER Portfolio

• Plug-in estimator of w∗f : ŵ∗f := 1√
θ̂f
Σ̂−1

f µ̂f

• Estimator of w∗u :

ŵ∗u = argmin
w

1
T

T∑
t=1

(
r̂c −w ′Ût

)2
subject to ||w ||1 ≤ λ

• Final estimator of the optimal portfolio wall :

ŵall := (ŵf , ŵ) =

σ√ θ̂f

θ̂all
ŵ∗f − σ

√
θ̂u

θ̂all
β̂′ŵ∗u , σ

√
θ̂u

θ̂all
ŵ∗u

 .
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ŵ∗f − σ

√
θ̂u

θ̂all
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Our Approach Scenario II: When Factor Investing Is Allowed

Main Result II: MAXSER with Factor Investing

Theorem 2

Under normality assumption on returns and a mild sparsity
assumption on w∗u , as N →∞, the MAXSER portfolio ŵall satisfies

|ŵall
′
µall − r∗| P→ 0, and |ŵall

′
Σallŵall − σ2| P→ 0, (10)

where r∗ = w ′allµall is the maximum expected return at risk level σ.
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Simulation Studies

Outline

1 Introduction

2 Our Approach
An Unconstrained Regression Representation
High-dimensional Issues & Sparse Regression
Scenario I: When Asset Pool Includes Individual Assets Only
Scenario II: When Factor Investing Is Allowed

3 Simulation Studies

4 Empirical Studies

5 Summary
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Simulation Studies

Simulation Setup

• Monthly returns simulated from a three-factor model (parameters
calibrated from real data)

• 1,000 replications
• Sample size T = 120/240, 100 stocks + 3 factors
• Compare portfolio risk and Sharpe ratio
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Simulation Studies

Portfolios Under Comparison

Portfolio Abbreviation
Plug-in MV on factors Factor
Three-fund portfolio by Kan and Zhou (2007) KZ
MV/GMV with different covariance matrix estimates
MV with sample cov MV-P
MV with linear shrinkage cov MV-LS
MV with nonlinear shrinkage cov MV-NLS
MV with nonlinear shrinkage cov adjusted for factor models MV-NLSF
GMV with linear shrinkage cov GMV-LS
GMV with nonlinear shrinkage cov GMV-NLS
MV with short-sale constraint & cross-validation
MV with sample cov & short-sale-CV MV-P-SSCV
MV with linear shrinkage cov & short-sale-CV MV-LS-SSCV
MV with nonlinear shrinkage cov & short-sale-CV MV-NLS-SSCV
MV with `1-norm constraint & cross-validation
MV with sample cov & `1-CV MV-P-L1CV
MV with linear shrinkage cov & `1-CV MV-LS-L1CV
MV with nonlinear shrinkage cov & `1-CV MV-NLS-L1CV
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Simulation Studies

Simulation Results: Normal Distribution, T = 120
Normal Distribution σ = 0.04, SR∗ = 1.882 T = 120
Portfolio Risk Sharpe Ratio
Factor 0.041 (0.003) 0.401 (0.169)
KZ 0.052 (0.040) 0.329 (0.184)
MAXSER 0.043 (0.005) 1.083 (0.302)
MV/GMV with different covariance matrix estimates
MV-P 0.296 (0.072) 0.367 (0.168)
MV-LS 0.082 (0.006) 0.697 (0.160)
MV-NLS 0.054 (0.017) 0.945 (0.183)
MV-NLSF 0.044 (0.002) 0.837 (0.139)
GMV-LS 0.013 (0.001) 0.438 (0.132)
GMV-NLS 0.015 (0.003) 0.553 (0.148)
MV with short-sale constraint & cross-validation
MV-P-SSCV 0.057 (0.035) 0.400 (0.112)
MV-LS-SSCV 0.039 (0.025) 0.666 (0.177)
MV-NLS-SSCV 0.035 (0.023) 0.850 (0.259)
MV with `1-norm constraint & cross-validation
MV-P-L1CV 0.041 (0.011) 0.539 (0.215)
MV-LS-L1CV 0.032 (0.012) 0.726 (0.179)
MV-NLS-L1CV 0.029 (0.011) 0.973 (0.171)
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Simulation Studies

Simulation Results: Normal Distribution, T = 240
Normal Distribution σ = 0.04, SR∗ = 1.882 T = 240
Portfolio Risk Sharpe Ratio
Factor 0.041 (0.002) 0.467 (0.108)
KZ 0.091 (0.031) 0.909 (0.130)
MAXSER 0.041 (0.003) 1.422 (0.200)
MV/GMV with different covariance matrix estimates
MV-P 0.070 (0.005) 0.911 (0.123)
MV-LS 0.061 (0.004) 0.943 (0.117)
MV-NLS 0.049 (0.004) 1.199 (0.117)
MV-NLSF 0.042 (0.001) 1.068 (0.104)
GMV-LS 0.009 (0.000) 0.450 (0.102)
GMV-NLS 0.009 (0.001) 0.539 (0.167)
MV with short-sale constraint & cross-validation
MV-P-SSCV 0.038 (0.008) 0.754 (0.259)
MV-LS-SSCV 0.038 (0.008) 0.744 (0.275)
MV-NLS-SSCV 0.038 (0.010) 0.847 (0.396)
MV with `1-norm constraint & cross-validation
MV-P-L1CV 0.036 (0.006) 1.057 (0.185)
MV-LS-L1CV 0.036 (0.005) 1.121 (0.177)
MV-NLS-L1CV 0.037 (0.005) 1.207 (0.154)
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Simulation Studies

Simulation Results: Heavy-tailed Distribution, T = 120
t(6) Distribution σ = 0.04, SR∗ = 1.882 T = 120
Portfolio Risk Sharpe Ratio
Factor 0.034 (0.003) 0.350 (0.202)
KZ 0.039 (0.031) 0.288 (0.191)
MAXSER 0.035 (0.005) 0.913 (0.327)
MV/GMV with different covariance matrix estimates
MV-P 0.246 (0.060) 0.321 (0.174)
MV-LS 0.062 (0.005) 0.635 (0.169)
MV-NLS 0.042 (0.009) 0.845 (0.179)
MV-NLSF 0.036 (0.002) 0.716 (0.150)
GMV-LS 0.013 (0.001) 0.459 (0.130)
GMV-NLS 0.014 (0.003) 0.572 (0.125)
MV with short-sale constraint & cross-validation
MV-P-SSCV 0.045 (0.033) 0.372 (0.102)
MV-LS-SSCV 0.031 (0.020) 0.609 (0.175)
MV-NLS-SSCV 0.028 (0.018) 0.764 (0.232)
MV with `1-norm constraint & cross-validation
MV-P-L1CV 0.034 (0.009) 0.456 (0.202)
MV-LS-L1CV 0.025 (0.010) 0.661 (0.186)
MV-NLS-L1CV 0.023 (0.009) 0.860 (0.181)
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Simulation Studies

Simulation Results: Heavy-tailed Distribution, T = 240
t(6) Distribution σ = 0.04, SR∗ = 1.882 T = 240
Portfolio Risk Sharpe Ratio
Factor 0.033 (0.002) 0.427 (0.141)
KZ 0.059 (0.023) 0.802 (0.154)
MAXSER 0.034 (0.003) 1.281 (0.243)
MV/GMV with different covariance matrix estimates
MV-P 0.058 (0.004) 0.807 (0.140)
MV-LS 0.048 (0.003) 0.847 (0.133)
MV-NLS 0.040 (0.004) 1.071 (0.138)
MV-NLSF 0.034 (0.001) 0.931 (0.117)
GMV-LS 0.010 (0.000) 0.469 (0.107)
GMV-NLS 0.010 (0.001) 0.538 (0.182)
MV with short-sale constraint & cross-validation
MV-P-SSCV 0.030 (0.008) 0.566 (0.227)
MV-LS-SSCV 0.030 (0.008) 0.551 (0.223)
MV-NLS-SSCV 0.031 (0.009) 0.575 (0.293)
MV with `1-norm constraint & cross-validation
MV-P-L1CV 0.028 (0.005) 0.980 (0.195)
MV-LS-L1CV 0.028 (0.005) 1.044 (0.179)
MV-NLS-L1CV 0.028 (0.005) 1.102 (0.173)
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Empirical Studies

Outline

1 Introduction

2 Our Approach
An Unconstrained Regression Representation
High-dimensional Issues & Sparse Regression
Scenario I: When Asset Pool Includes Individual Assets Only
Scenario II: When Factor Investing Is Allowed

3 Simulation Studies

4 Empirical Studies

5 Summary
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Empirical Studies

Data & Rolling-window Scheme

• Two asset universes
• DJIA 30 constituents and Fama-French three factors
• S&P 500 constituents and Fama-French three factors

• Rolling-window scheme
• monthly rolling and rebalancing
• risk constraint fixed to be the standard deviation of the index during

the first training period
• Stock pool determination

• DJIA 30: all constituents at each time of portfolio construction,
updated monthly

• S&P 500: yearly updated stock pools consisting of 100 randomly
picked constituents
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Empirical Studies

Compared Portfolios and Performance Measure

• Additional compared portfolios:
• Index
• The equally weighted portfolio (the “1/N” rule)

• We compare the risk and Sharpe ratio, and further perform test
about Sharpe ratio
• Test

H0 : SRMAXSER 6 SR0 vs Ha : SRMAXSER > SR0,

where SRMAXSER is the Sharpe ratio of MAXSER portfolio, and SR0
is the Sharpe ratio of one of the compared portfolios
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Empirical Studies

DJIA Constituents & FF3

DJIA 30 Constituents & FF3 (Without Transaction Costs) T = 60 σ = 0.05
Period 1977–2016 1997–2016
Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value
Index 0.043 0.270 0.000 0.043 0.310 0.001
Equally weighted 0.042 0.328 0.000 0.044 0.307 0.001
Factor 0.055 0.427 0.000 0.058 0.254 0.000
KZ 0.104 0.250 0.000 0.097 0.265 0.000
MAXSER 0.060 0.556 – 0.064 0.567 –
MV-P 0.116 0.196 0.000 0.132 0.292 0.000
MV-LS 0.070 0.132 0.000 0.077 0.376 0.003
MV-NLS 0.068 0.166 0.000 0.073 0.352 0.001
MV-NLSF 0.067 0.232 0.000 0.070 0.290 0.000
GMV-LS 0.016 0.453 0.030 0.018 0.307 0.000
GMV-NLS 0.016 0.364 0.000 0.018 0.274 0.000
MV-P-SSCV 0.045 0.407 0.001 0.045 0.448 0.042
MV-LS-SSCV 0.044 0.376 0.000 0.045 0.469 0.070
MV-NLS-SSCV 0.044 0.443 0.005 0.044 0.473 0.072
MV-P-L1CV 0.043 0.136 0.000 0.043 0.253 0.000
MV-LS-L1CV 0.041 0.102 0.000 0.040 0.366 0.002
MV-NLS-L1CV 0.040 0.131 0.000 0.038 0.317 0.000
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Empirical Studies

S&P 500 Constituents & FF3

S&P 500 Constituents & FF3 (Without Transaction Costs) T = 120 σ = 0.04
Period 1977–2016 1997–2016
Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value
Index 0.043 0.279 0.000 0.044 0.302 0.000
Equally weighted 0.047 0.332 0.000 0.049 0.344 0.001
Factor 0.040 0.517 0.002 0.045 0.409 0.005
KZ 0.081 0.369 0.000 0.087 0.331 0.001
MAXSER 0.047 0.667 – 0.053 0.591 –
MV-P 0.347 0.383 0.000 0.367 0.257 0.000
MV-LS 0.079 0.248 0.000 0.078 0.093 0.000
MV-NLS 0.061 0.232 0.000 0.064 0.091 0.000
MV-NLSF 0.054 0.348 0.000 0.057 0.141 0.000
GMV-LS 0.022 0.277 0.000 0.025 0.436 0.027
GMV-NLS 0.025 0.271 0.000 0.027 0.467 0.063
MV-P-SSCV 0.061 0.347 0.000 0.067 0.316 0.000
MV-LS-SSCV 0.054 0.120 0.000 0.058 0.157 0.000
MV-NLS-SSCV 0.054 0.096 0.000 0.058 0.139 0.000
MV-P-L1CV 0.047 0.318 0.000 0.047 0.128 0.000
MV-LS-L1CV 0.044 0.047 0.000 0.048 −0.053 0.000
MV-NLS-L1CV 0.043 0.060 0.000 0.048 −0.059 0.000
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Empirical Studies

What about transaction costs?

• The portfolio return net of transaction cost in period t , rnet(t) is
calculated by

rnet(t) =

1−
∑

j

ct ,j |wj(t + 1)− wj(t+)|

 (1 + r(t))− 1,

• ct,j : a cost level that measures transaction cost per dollar traded
for trading asset j

• wj(t + 1): weight on asset j at the beginning of period t + 1
• wj(t+): weight of asset j at the end of period t
• r(t): portfolio return without transaction cost in period t

• Based on Brandt et al. (2009) and Engle et al. (2012), we set ct ,j
to be time-varying, different for individual stock and factor portfolio
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Empirical Studies

DJIA constituents & FF3, transaction costs considered

DJIA 30 Constituents & FF3 (With Transaction Costs) T = 60 σ = 0.05
Period 1977–2016 1997–2016
Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value
Index1 0.043 0.270 0.002 0.043 0.310 0.011
Equally weighted 0.042 0.317 0.724 0.044 0.300 0.108
Factor 0.055 0.265 0.273 0.058 0.146 0.000
KZ 0.108 −0.134 0.000 0.098 0.040 0.000
MAXSER 0.061 0.284 – 0.064 0.402 –
MV-P 0.117 −0.073 0.000 0.132 0.101 0.000
MV-LS 0.071 −0.014 0.000 0.077 0.299 0.067
MV-NLS 0.069 −0.077 0.000 0.073 0.213 0.002
MV-NLSF 0.067 0.045 0.000 0.070 0.187 0.000
GMV-LS 0.016 0.313 0.716 0.018 0.213 0.005
GMV-NLS 0.017 0.079 0.000 0.018 0.066 0.000
MV-P-SSCV 0.046 −0.258 0.000 0.045 0.147 0.000
MV-LS-SSCV 0.045 −0.042 0.000 0.045 0.323 0.105
MV-NLS-SSCV 0.045 −0.099 0.000 0.044 0.299 0.047
MV-P-L1CV 0.044 −0.350 0.000 0.043 0.011 0.000
MV-LS-L1CV 0.042 −0.127 0.000 0.040 0.281 0.036
MV-NLS-L1CV 0.041 −0.232 0.000 0.038 0.172 0.000
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Empirical Studies

S&P 500 & FF3, transaction costs considered

S&P 500 Constituents & FF3 (With Transaction Costs) T = 120 σ = 0.04
Period 1977–2016 1997–2016
Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value
Index2 0.043 0.279 0.003 0.044 0.302 0.012
Equally weighted 0.047 0.307 0.012 0.049 0.330 0.030
Factor 0.040 0.408 0.228 0.045 0.330 0.013
KZ 0.082 0.009 0.000 0.087 0.160 0.000
MAXSER 0.048 0.445 – 0.053 0.483 –
MV-P 0.349 −0.185 0.000 0.357 −0.018 0.000
MV-LS 0.079 0.066 0.000 0.078 0.011 0.000
MV-NLS 0.061 0.099 0.000 0.064 0.022 0.000
MV-NLSF 0.054 0.175 0.000 0.057 0.054 0.000
GMV-LS 0.022 0.104 0.000 0.025 0.350 0.044
GMV-NLS 0.025 0.142 0.000 0.027 0.398 0.139
MV-P-SSCV 0.062 0.059 0.000 0.068 0.174 0.000
MV-LS-SSCV 0.054 −0.043 0.000 0.059 0.083 0.000
MV-NLS-SSCV 0.054 −0.028 0.000 0.058 0.075 0.000
MV-P-L1CV 0.047 0.040 0.000 0.047 −0.013 0.000
MV-LS-L1CV 0.044 −0.101 0.000 0.048 −0.112 0.000
MV-NLS-L1CV 0.043 −0.059 0.000 0.048 −0.110 0.000
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Summary

Summary

• MAXSER asymptotically achieves the maximum Sharpe ratio and
meanwhile satisfies the risk constraint

• First method ever that achieves both objectives
• Outstanding performance confirmed by comprehensive

simulation and empirical studies
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Summary

Summary

• MAXSER asymptotically achieves the maximum Sharpe ratio and
meanwhile satisfies the risk constraint

• First method ever that achieves both objectives
• Outstanding performance confirmed by comprehensive

simulation and empirical studies

Thank you!
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